TUTORIAL-05: COST TARGETING

Based on Lecture-21: Cost targeting

Problem 1: Compute the cost targeted for stream data shown in Table 1, where two hot streams exchange heat against a single cold stream assuming ΔT_{min} as 10°C. The overall heat transfer coefficient, U, is constant and is equal to 0.123 kW.m⁻²K⁻¹ for all exchangers.

stream	Supply temperature, Ts (°C)	Target temperature, Tt (°C)	Heat capacity flow rate, CP (kW.°C ⁻¹)
HOT (H1)	180	140	1.4
HOT (H2)	150	90	2.5
COLD (C1)	70	150	4

Given:

(a) The capital cost of the individual heat exchangers is according to following relationship:

Heat exchanger capital cost (\$) = 30,000 + 400 (A)^{0.9}

Where, A is the heat transfer area of exchanger in m^2 .

(b) The utility costs are:

Steam cost = 120,000 (\$.kW⁻¹.y⁻¹)

Cooling water $cost = 10,000 (\$.kW^{-1}.y^{-1})$

(c) Plant life and rate of interest are assumed as 5 years and 10%, respectively.

Solution 1: To target the cost for stream data shown in Table 1 first area is targeted as shown for Problem 1 of Tutorial-03, which comes out to be 68.866 m^2 .

Now cost targeting can be described as -

a) Capital cost targeting

Capital cost = $30,000 + 400 (A)^{0.9} = 30,000 + 400 (68.866)^{0.9} = 48041.156$ Conversion of the capital cost into annual capital cost : Conversion factor : $\frac{i(1+i)^n}{(1+i)^n-1}$

where n and i are 5 and 10, respectively.

So the annual capital cost is computed as:

Annual capital cost = Capital cost * Conversion factor

$$= 48041.156* \frac{0.1*(1+0.1)^5}{(1+0.1)^5 - 1}$$
$$= 12673.1359 \text{ }\text{syr}^{-1}$$

b) Operating cost targeting

For the present problem hot and cold utility are found as 114 kW and 0 kW, respectively, as computed for Problem 1 of Tutorial-03. Thus,

Hot utility
$$cost = 114 * 120,000 = 13680.00$$
\$.yr⁻¹

Similarly,

Cold utility cost = 0 * 10,000 = 0 \$.yr⁻¹

Thus, total annual operating cost is 13680\$.yr⁻¹.

c) Total Annual Cost (TAC) Targeting

TAC = Annual capital cost + Annual operating cost

=13680 + 12673.1359 = 26353.1359

So, Total annual cost is targeted as \$ 26353.1359/yr.

Problem 2: For a process the stream data, together with utility data and heat transfer coefficients are shown in Table 2, where ΔT_{min} is selected as 10 °C. Steam from 250°C to 249°C is used as hot utility whereas cold water from 25°C to 35°C is used as cold utility. Target the cost for this process.

Stream	Supply temperature T _s (°C)	Target temperature T _T (°C)	ΔH (MW)	Heating capacity flow rate, CP (MW.°C ⁻¹)	Film heat transfer coefficient, h (MW.m ⁻² .°C ⁻¹)
Cold (C1)	25	185	32.0	0.25	0.0008
Hot (H1)	260	50	-31.5	0.16	0.0009
Cold (C2)	145	235	27.0	0.32	0.0009
Hot (H2)	190	70	-30.0	0.26	0.0010
Steam (HU)	250	249			0.0040
Cold water (CU)	25	35			0.0010

Table 2: Complete stream and utility data for the process

Given:

Cost of hot utility = 150 (\$.kW⁻¹.y⁻¹)

Cost of cold utility = 15 (\$.kW⁻¹.y⁻¹)

Installed capital cost = $40000 * A^{0.83}$

Rate of interest = 12%

Plant life = 6 year

Solution 2: To calculate the cost for stream data shown in Table 2, total area is targeted first, which is 6520.636 m^2 as shown for Problem 2 of Tutorial-03.

Now the total cost targeting is described below:

a) Capital cost targeting

Capital cost targets (\$) = 40000^{*} (A) $^{0.83}$ = $40000^{*}(6520.636)^{0.83}$ = 58603108

Conversion of the capital cost into annual capital cost:

Conversion factor =
$$\frac{i(1+i)^n}{(1+i)^n - 1}$$

where n and i are 6 and 0.12, respectively. Thus, the annual capital cost is computed as:

Annual capital cost = Capital cost * Conversion factor

$$= 58603108 * \frac{0.12 * (1 + 0.12)^{6}}{(1 + 0.12)^{6} - 1}$$

$$= 14253783.05$$
 \$yr⁻¹

b) Operating cost targeting

For the present problem hot and cold utility are found as 12.9 MW and 8.90 MW, respectively, as computed for Problem 1 of Tutorial-03. Thus,

Hot utility
$$cost = 12900 * 150 = 1935000$$
 \$.yr⁻¹

Similarly,

Cold utility cost = 8900 * 15 = 133500 \$.yr⁻¹

Thus the total annual operating cost is 2068500 $\ensuremath{\$.yr^{-1}}$

c) Total Annual Cost (TAC) Targeting

TAC = Annual capital cost + Annual operating cost = 14253783.05 + 2068500 = 16322283.05\$.yr⁻¹

So, Total annual cost is targeted as \$ 16322283.05/yr.